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NMR STUDIES OF DRUGS. USE OF LANTHANIDE SHIFT

REAGENTS IN POLAR SOLVENT WITH THALIDOMIDE.

Key Words: NMR shift reagents, Europiun, Eu(FOD) .,
Eu(HFC),, Stereoisomers, Optical purity,
Enantiomeric excess, Chiral, Analysis, Chelation,
2~-(2,6~dioxo~-3~piperidinyl)~-1H-isoindole-1,3 (2H) ~
dione.
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ABSTRACT

The 200.1 MHz 'H NMR spectra of thalidomide,
1, have been studied in CD,CN solution at ambient
temperatures with the achiral shift reagent,
tris(6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3, 5~

octanedionato)europium(III), 2, and the chiral

* To whom correspondence should be sent.
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reagent, tris[3-(heptafluoropropylhydroxy-
methylene)~(+)-camphoratojeuropium(III), 3.

The use of sufficiently high LSR:1 molar
ratios served to compensate for competitive binding
of LSR by the polar solvent, and permitted
substantial lanthanide~induced shifts to be
observed with 2 or 3. With 3, significant
enantiomeric shift differences were produced for
the methine NCH multiplets of each enantiomer to be
fully separated from one another, offering the
potential for direct determination of enantiomeric
excess of 1.

INTRODUCTION

Thalidomide, 1, 2-(2,6-dioxo-3-piperidinyl)-
1H~-isoindole~1,3 (2H)~dione, also Xnown as a-
phthalimidoglutarimide, is perhaps best known as
the sedative/hypnotic which produced limb
deformities (phocomelia) in about 12,000 children
born in the late 1950's and early 1960's to mothers
who had taken the drug during early pregnancy
(1,2). Subsequently, the drug has been examined
for potential utility for a number of applications,

including treatment of a form of leprosy (erythema
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nodosum leprosum) (1,3); rheumatoid arthritis,

certain inflammatory skin diseases and ulcerative
diseases, and graft-versus-host disease (4,5).
Since 1 possesses a chiral center at C-3 of the
piperidinedione (i.e., the glutarimide a-carbon),
thalidomide can exist as a pair of enantiomers,
which have each been synthesized (6). The racemate
and each enantiomer of 1 have been compared for
toxicity and sedative/hypnotic potency in mice, as
well as rabbit teratogenicity (7). Interactions of
the enantiomers of 1 with DNA or soluble RNA have

also been described (8). Stereospecific embryo
toxicity and teratogenicity of metabolites,
hydrolysis products or analogs of enantiomers of 1
have been reported (9-11).

In particular, Blaschke et al. (12) reported
successful chromatographic separation of 1 on a

polyamide chiral stationary phase (CSP).
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Intraperitoneal administration demonstrated that
teratogenicity resided in the S-(-) enantiomorph
for SWS mice and Natal rats, with the R-(+) isomer
inactive even at higher doses. These findings, as
well as an increased general concern with
understanding the pharmacological effects of each
stereoisomer of pharmaceuticals (13-15), have
resulted in the study of 1 as a model compound for
liquid chromatographic methods aimed at chiral
separations. There have been numerous discussions
involving such techniques applied to 1 (12,16-22),
with chiral CSPs for HPILC.

An alternative, complementary method for
determination of enantiomeric excess (% ee) is the
spectroscopic method based on NMR with chiral
lanthanide shift reagents (LSR). The techniques of
ISR use for spectral simplification and ee
determination have been reviewed (23-26). LSRs
have been employed with other chiral glutarimides,
including glutethimide (27) and aminoglutethimide
(28) . The NMR examination of 1 using LSR methods
was therefore investigated. However, the nonpolar
or low polarity solvents (e.g., CCl,, CDCl;,

pentane) that are typically used with lanthanide g-
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diketonate LSRs are poor solvents for 1, which was
highly insoluble in CDCl,, and only marginally
soluble in CD;CN. Polar solvents such as CD;CN or
(CD;) ,CO are not ordinarily used with these LSRs
since the LSR (a hard Lewis acid) would be
competitively bound by polar solvents capable of
acting as Lewis bases. Small lanthanide-induced
shift (LIS) and enantiomeric shift difference (AAS§)
magnitudes would result (23-26,29,30). The more
polar solvents appeared useful with lanthanide g-
diketonate LSRs only where a di- or trifunctional
substrate could chelate with lanthanide via five-
or six-membered ring formation (31). Recently,
however, we were successful in using CD,CN with
these LSRs for a study of 5-methyl-5-
phenylhydantoin (32). We were encouraged to
undertake this present study of racemic 1 in CD,CN
using the achiral LSR, tris(6,6,7,7,8,8,8-
heptafluoro-2,2~dimethyl-3,5 octanedionato)-
europium(III), 2, known as Eu(FOD),, and the chiral
LSR, tris[3-(heptafluoropropylhydroxymethylene) -
(+) -camphoratojeuropium(III), 3, known as Eu(HFC),

or Eu(HFBC),.
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EXPERIMENTAL

A sample of racemic 1 as lot no. 1055/B
(stated content 99.2%, mp 274-276°) was obtained
from Grunenthal GmbH, D-5190 Stolberg, Fed. Rep.
Germany, and was used as supplied. LSR reagents
and CD,CN (99.5 atom % D) were obtained from
Aldrich Chemical Corp., Milwaukee WI 53201. The
CD;CN was dried and stored over 3A Molecular
Sieves; LSRs were stored in a desiccator over
anhydrous CasSQ, or P,0;. Materials were used as
received except as noted. Chemical shifts are
reported in § (ppm) relative to tetramethylsilane
(TMS) at 0.00 ppm. For typical runs with LSR, an
accurately weighed portion of drug was added to
CD,CN [containing a trace of TMS as internal

standard] in an oven-dried thin wall 5mm NMR sample

tube and dissolved by shaking; increments of solid
shift reagent were added directly to the sample,
dissolved by shaking, and the spectra immediately
obtained. The NMR studies were performed with a
Bruker AC200-F Fourier transform NMR spectrometer
with ASPECT 3000 data system for a 'H observe

frequency of 200.13 MHz. These spectra were
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obtained in the FT mode at ambient probe
temperature using the dual 'H/"C probe. Chemical
shifts were obtained from spectral peak tables.
Coupling constants and enantiomeric shift
differences were determined by subtraction from
peak frequency printouts and are believed accurate
to +0.2 Hz. Typical FT-NMR parameters were as
follows: 4032 Hz spectral width (about -4 to +16
ppm) over 64K data points collected in the
quadrature detection mode for a digital resolution
of 0.123 Hz per point, pulse width 3.0 us, 8.13 s
acquisition time, 1.0 s relaxation delay; 16 FIDs
were accumulated. No line broadening or resolution
enhancement was applied. 1In runs with chiral LSR
where enantiomeric shift differences were observed

for selected resonances, reported chemical shifts
are the average values for the two enantiomers.

RESULTS AND DISCUSSION

The 200 MHz 'H NMR spectrum for 1 in CD,CN
(0.37% w/v, 20°) showed resonances as follows
(chemical shift in ppm relative to internal TMS):
8.97 (1H, br s, NH); ca. 7.87 (2H, complex mult,
"ortho" aryl H); ca. 7.84 (2H, complex mult, "meta”

aryl H); 5.02 (1H, m, H-3 [a], NCH); ca. 2.73 (1H,
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m, H-5 [b]) and ca. 2.75 (1H, m, H-5' [b']): ca.
2.1 (m, partly overlapped with HDO peak, H-4 [c]):
ca. 2.66 (1H, m, H-4' [c']). These assignments are
quite tentative due to the considerable complexity
of the multiplets and the tightly coupled spin
systems. The aryl protons constitute an AA'BB'
system exhibiting a narrow multiplet with a center
of symmetry. Aside from the broad lowfield imide
proton and the aryl protons, the methine H-3 on the
glutarimide ring may be unambiguously assigned as
the most deshielded of the alphatic protons. This
proton, attached to the chiral center, we designate
H,. Cis and trans vicinal couplings are expected
between H, and the methylene protons, H-4 and H-4'
(H, and H.,) but H, does not appear as a simple
double doublet, dd, presumably due to second order
effects. The H, chemical shift reflects
deshielding contributions by both nitrogen and the
C(2) glutarimide carbonyl. The narrow complex
multiplet centered at 2.74 ppm is assigned to the
CH,CO methylene, H-5,5', labeled as H, and H,. We
reason that this methylene should be deshielded by

the attached carbonyl and might exhibit relatively
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little diastereotopic anisochrony since these
protons are further from the chiral center. The
highest field signals are assigned to the
diastereotopic methylene protons, H~4,4°',
designated as H. and H, since they are remote from
deshielding groups. The high degree of magnetic
nonequivalence for this pair of nuclei can be
accounted for by their proximity to the chiral
center (just two bonds away) and may reflect
magnetic anisotropic effects of the phthalimido

substituents. In fact, the three protons H and

bbl

H_, are all part of a complex multiplet integrating

o
to 3H, from ca. 2.57-2.84 ppm, and are not
distinctly separated. We have not attempted
rigorous assignments of the ¢is, trans
relationships of the CH,CH, moiety. Incremental
addition of the achiral LSR, Eu(FOD);, 2, was
carried out to a 2:1 molar ratio of 10.0. The
results are shown in Figure 1. Lanthanide-induced
shifts (LIS) are appreciable, leading to some

spectral simplification by enhancing the separation

between the two sets of aryl protons, ortho and

meta, and between the upfield protons labeled H-
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H-4 (c)
H-4' (¢
H-5 (b)
H-5' (b
H-3 (a)
H(meta)
H(ortho)
NH

Chemical Shift, ppm
ttadte o

2 - T . . . r . - .
0 2 4 6 8 10 12
Molar Ratio, [Eu(FOD)3]/[{drug]

Figure 1. Variation of chemical shift (in ppm)
with 2:]1 molar ratio.

5,5' versus H-4'. While the upfield protons of the
CH,CH, group all remain complex multiplets, the
methine H, (H-3) does simplify to a dd pattern at a
2:1 molar ratio of 3.0, exhibiting observed
(apparent) vicinal coupling constants of 5.4 and
12.8 Hz. As the 2:1 ratio was increased to 10.0,
the larger coupling constant increased
monotonically to 13.2 Hz; the smaller coupling did
not show a monotonic change and was essentially

constant within the estimated experimental error of
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+0.2 Hz. Even the small observed change in the
larger coupling constant may be attributed to a
measurement artifact, since its magnitude was only
2-3 times the digital resolution. The highest
field signal, assigned as H_ (H-4), consistently
appeared as a much narrower multiplet than H, (H-
4')y. It is also noteworthy that the slopes of the
plots of chemical shift versus 2:1 ratio, shown in
Fig. 1, are essentially linear to the highest LSR
level. This will be further discussed below.

With increments of the chiral Eu(HFC),, 3,
added to a 0.37% (w/v) solution of 1 in CD,CN, the
LIS magnitudes were qualitatively similar to
results with 2, as shown in Figure 2.
Significantly, enantiomeric shift differences (AA§)
were clearly observed for the methine H, (H-3) and
for the imide NH (Figure 3). With 3:1 ratios of
8.0 or more, both resonances show signals from each
enantiomer that are fairly well resolved. For the
methine H,, each enantiomer's dd signal has been
separated; all eight lines are readily seen. The
valley height between the two dd signals, relative

to the average adjacent peak heights, was about 31
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H-4 (c)
H-4' (¢
H-5 (b)
H-5" (b")
H-3 (a)
H(meta)
H(ortho)
NH

Chemical Shift, ppm
LS I IR -

Molar Ratio, [Eu(HFC)3¥/[drug]

Figure 2. Variation of chemical shift (in ppm)
with 3:1 molar ratio.

and 20% at 3:1 ratios of 8.0 and 10.0,
respectively. For the NH signal, resolution by the
valley height criterion was about 26 and 15% at
these respective levels of 3. Representative
spectral traces are shown in Figure 4. Signal-to-
noise ratio was enhanced for these signals by
acquiring 256 FIDs with a digital resolution of
0.368 Hz. Superior separation may be achieved
using even higher 3:1 ratios than we have used.

Aside from LSR-induced line broadening, the
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40

30 4

20

Enantiomeric Shift Difference, Hz

0 - T v T T T Y T v T

0 2 4 6 8 10 12
Molar Ratio, [Eu(HFC)3)/[drug]

Figure 3. Variation of enantiomeric shift
difference (in Hz at 200 MHz) with 3:1 molar ratio.

complexity of the H, signal results from splitting
by the diastereotopic protons H-4,4'. Broadening
of the NH resonance may largely reflect N
guadrupole broadening. We have previously
suggested the possible value of heteronuclear N
decoupling as a means of sharpening amide or imide
resonances (32) to permit improved signal
separation for '"H NMR LSR methods of % ee
determination. Our results here (without "N

decoupling) clearly show analytical potential for
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Figure 4. (a) NH signal centered at 10.78 ppm (AAS§
= 36.6 Hz); (b) methine NCH signal (H-3) centered
at 7.05 ppm (AAS = 32.1 Hz). A total of 256 FIDs
were acquired with a digital resolution of 0.368
Hz/pt for a 0.37% (w/v) solution of 1.

direct ee determinations of 1 in CD,CN using 3:1
ratios of 10 (or more), based on either the NH or
methine (H-3) absorptions.

Table 1 summarizes the relative LIS magnitudes
obtained with the two LSRs. The slopes for the

plots of chemical shift versus molar ratio of
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LSR:1, from the data of Figs. 1 and 2, are
presented in both unnormalized and normalized form.
These slopes reflect least squares line fitting
with 2:1 ratios from 0.0-10.0 (five experimental
points) with R=1.00 (except R=0.99 for the meta
protons). With 3, molar ratios from 0.0-3.0 were
used (five experimental points) since some leveling
off was noted at higher molar ratios; over the
lower range, fairly good fits were obtained
(R=1.00) except for the meta protons (R=0.97). The
low slope values for the meta protons presumably
reflect their remoteness from the LSR binding sites
on the carbonyls; small experimental errors in
estimating chemical shifts for the meta protons
result in the poorer fit to the calculated line.
Electronic factors would suggest greater basicity
for the glutarimide carbonyls than for the
phthalimido carbonyls, since the latter are
conjugated with the benzene ring. Steric factors
would favor LSR binding at the C-6 rather than the
C-2 carbonyl. 1In fact, there is presumably some
contribution from bound complexes with LSR at each

of the carbonyls, in rapid equilibrium. Most
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important, however, is that 1 is not constructed to
allow favorable bidentate chelation of LSR via
five- or six- membered ring formation, in contrast
to the substrates of ref. 31. We can not rule out
bidentate chelation involving the C(2) oxygen and
one of the phthalimido carbonyls binding to the
lanthanide, but this would require a less favorable
seven-membered ring.

Normalized slopes were calculated relative to
the signal assigned to H-4' (c') since this signal
was generally free from interfering overlaps, could
be assigned a chemical shift with reasonable
accuracy, exhibited appreciable LIS magnitudes, and
was sufficiently far from any carbonyl binding site
(for the LSR) to preclude significant Fermi contact
shift contributions. The CH or NH protons alpha to
the carbonyls were not used for normalization
because of potential Fermi contact shifts for these
nuclei. Very good agreement is seen in comparing
the normalized slope values for the two LSRs,
suggesting that the bound complexes of 1 with
either 2 or 3 are close to isostructural. A modest

difference is seen for the absorptions assigned to
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H-5,5'(b,b'), with slopes about 13% higher using 2.
The calculated slopes for the nuclei of 1 decrease
in the order: H-5,5' > H-3 > NH > H-4' > H-4 >

ortho > meta. The relative values for the carbon-

bound glutarimide protons are consistent with
predominant LSR binding at the less hindered C-6
carbonyl.
CONCLUSTIONS

The 200.1 MHz 'H spectra of 0.37% (w/V)
thalidomide have been studied in CD,CN solution at
20° with added Eu(FOD); or Eu(HFC);. Both reagents
produce appreciable LIS magnitudes if high molar
ratios of LSR:1l are used. Thus, even in the
presence of a moderately polar solvent which can
competitively bind LSR, it is possible to use
lanthanide f-diketonate reagents for spectral
simplification of a substrate that can not form
strong five- or six-membered ring chelates with
lanthanide. This is especially remarkable when one
considers that in the dilute substrate solutions
examined here, the solvent is present in about a
thousand-fold molar excess relative to the solute,

1. Of particular importance is the potential to
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obtain analytically useful enantiomeric shift

differences for direct ee determinations, simply by

using sufficient LSR. This appears to be the first
NMR LSR report for potential % ee determination of
thalidomide. Optimum results could be based on the
NH or methine NCH signals with 3:1 ratios of 10.0
or more.
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